Chapter 1 Functions

This chapter lists and describes Mathcad's built-in mathematical and statistical functions. The functions are listed alphabetically.

Functions labeled *Professional* are available only in Mathcad Professional. Certain features labeled *Expert* require Mathcad Professional and are available for sale separately (in Mathcad Expert Solver).

Function names are case-sensitive, but not font-sensitive. Type them in any font, but use the same capitalization as shown in the syntax section.

Many functions described here as accepting scalar arguments will, in fact, accept vector arguments. For example, while the input z for the **acos** function is specified as a "real or complex number," **acos** will in fact evaluate correctly at each of a vector input of real or complex numbers.

Some functions don't accept input arguments with units. For such a function f, an error message "must be dimensionless" will arise when evaluating f(x), if x has units.

Function Categories

Each function falls within one of the following categories:

- Bessel
- Complex numbers
- Differential equation solving
- Expression type
- File access
- Fourier transform
- Hyperbolic
- Interpolation and prediction
- Log and exponential
- Number theory/combinatorics
- Piecewise continuous
- Probability density
- Probability distribution
- Random number
- Regression and smoothing
- Solving
- Sorting
- Special
- Statistics

- String
- Trigonometric
- Truncation and round-off
- Vector and matrix
- Wavelet transform

The category name is indicated in the upper right corner of each entry. To see all the functions that belong to a given category, check the index of this book.

Finding More Information

You can also find information about functions using either of these methods:

- To quickly see a short description of each function from within Mathcad, choose **Function** from the **Insert** menu. Select a function in the Function field, then read the description in the Description field. Click on the **Help** button to see the Help topic on a selected function.
- Refer to the Resource Center QuickSheets for more detailed information about functions, categories, and related topics. Select **Resource Center** from the **Help** menu. Then click on the QuickSheets icon and select a specific topic.

About the References

References are provided in Appendix B for you to learn more about the numerical algorithm underlying a given Mathcad function or operator. References are not intended to give a description of the actual underlying source code. Some references (such as *Numerical Recipes*) do contain actual C code for the algorithms discussed therein, but the use of the reference does not necessarily imply that the code is what is implemented in Mathcad. The references are cited for background information only.

Functions

acos	Trigonometric
Syntax	$a\cos(z)$
Description	Returns the inverse cosine of z (in radians). The result is between 0 and π if z is real. For complex z, the result is the principal value.
Arguments	
Z	real or complex number
acosh	Hyperbolic
Syntax	$\operatorname{acosh}(z)$
Description	Returns the inverse hyperbolic cosine of z . The result is the principal value for complex z .
Arguments z	real or complex number
acot	Trigonometric
Syntax	acot(z)
Description	Returns the inverse cotangent of z (in radians). The result is between 0 and π if z is real. For complex z, the result is the principal value.
Arguments z	real or complex number
acoth	Hyperbolic
Syntax	acoth(z)
Description	Returns the inverse hyperbolic cotangent of z . The result is the principal value for complex z .
Arguments z	real or complex number
acsc	Trigonometric
Syntax	acsc(z)
Description	Returns the inverse cosecant of z (in radians). The result is the principal value for complex z .
Arguments z	real or complex number

acsch

Syntaxacsch(z)DescriptionReturns the inverse hyperbolic cosecant of z. The result is the principal value for complex z.

Arguments

z real or complex number

Ai

(Professional)

Bessel

Trigonometric

Syntax Ai(x)

х

Description Returns the value of the Airy function of the first kind.

Arguments

real number

Example

- **Comments** This function is a solution of the differential equation: $\frac{d^2}{dx^2}y x \cdot y = 0$.
- Algorithm Asymptotic expansion (Abramowitz and Stegun, 1972)
- See also Bi

angle

Syntax angle(*x*, *y*)

Description Returns the angle (in radians) from positive *x*-axis to point (x, y) in *x*-y plane. The result is between 0 and 2π .

Arguments

x, *y* real numbers

See also arg, atan, atan2

APPENDPRN File Access Syntax APPENDPRN(file) := ADescription Appends a matrix A to an existing structured ASCII data file. Each row in the matrix becomes a new line in the data file. Existing data must have as many columns as A. The function must appear alone on the left side of a definition. Arguments file string variable corresponding to structured ASCII data filename or path See also WRITEPRN for more details **Complex Numbers** arg Syntax arg(z)Description Returns the angle (in radians) from the positive real axis to point z in the complex plane. The result is between $-\pi$ and π . Returns the same value as that of θ when z is written as $r \cdot e^{i \cdot \theta}$. Arguments Ζ. real or complex number See also angle, atan, atan2 asec Trigonometric Syntax asec(z)Description Returns the inverse secant of z (in radians). The result is the principal value for complex z. Arguments real or complex number z Hyperbolic asech Syntax asech(z)Description Returns the inverse hyperbolic secant of z. The result is the principal value for complex z. Arguments real or complex number Z.

asin	Trigonometric	
Syntax	asin(z)	
Description	Returns the inverse sine of z (in radians). The result is between $-\pi/2$ and $\pi/2$ if z is real. For complex z, the result is the principal value.	
Arguments z	real or complex number	
asinh	Hyperbolic	
Syntax	asinh(z)	
Description	Returns the inverse hyperbolic sine of z . The result is the principal value for complex z .	
Arguments z	real or complex number	
atan	Trigonometric	
Syntax	atan(z)	
Description	Returns the inverse tangent of z (in radians). The result is between $-\pi/2$ and $\pi/2$ if z is real. For complex z, the result is the principal value.	
Arguments z	real or complex number	
See also	angle, arg, atan2	
atan2	Trigonometric	
Syntax	atan2(x, y)	
Description	Returns the angle (in radians) from positive <i>x</i> -axis to point (<i>x</i> , <i>y</i>) in <i>x</i> - <i>y</i> plane. The result is between $-\pi$ and π .	
Arguments <i>x</i> , <i>y</i>	real numbers	
See also	angle, arg, atan	
atanh	Hyperbolic	
Syntax	atanh(z)	
Description	Returns the inverse hyperbolic tangent of z . The result is the principal value for complex z .	
Arguments		
Z	real or complex number	
8	Chapter 1 Functions	

11, 12		
Example	$A = \begin{bmatrix} \sqrt{5} \\ 0 \\ 0 \\ m \end{bmatrix} \qquad B = identity(3) \qquad B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	
	$augment(A,B) = \begin{bmatrix} 1.0421 & 1 & 0 & 0 \\ 2.78521 & 0 & 1 & 0 \\ 3.04752 & 0 & 0 & 1 \end{bmatrix} = atach \begin{bmatrix} A^T,B \\ A^T,B \end{bmatrix} = \begin{bmatrix} 1.40421 & 2.21628 & 3.04159 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	
See also	stack	
bei	(Professional)	
Syntax	bei(n, x)	
Description	Returns the value of the imaginary Bessel Kelvin function of order <i>n</i> .	
Arguments n x	integer, $n \ge 0$ real number	
Comments	The function ber $(n, x) + i \cdot bei(n, x)$ is a solution of the differential equation: $x^{2} \frac{d^{2}}{dx^{2}}y + x \cdot \frac{d}{dx}y - (i \cdot x^{2} + n^{2}) \cdot y = 0.$	
Algorithm	Series expansion (Abramowitz and Stegun, 1972)	

ber	(Professional)	Bessel
Syntax	ber(<i>n</i> , <i>x</i>)	
Description	Returns the value of the real Bessel Kelvin function of order <i>n</i> .	
Arguments		
n	integer, $n \ge 0$	
x	real number	

Vector and Matrix

Bessel

Syntax augment(A, B)

Description Returns a matrix formed by placing the matrices **A** and **B** side by side.

Arguments A. B

See also

ber

augment

two matrices or vectors; A and B must have the same number of rows

Comments	The function $ber(n, x) + i \cdot bei(n, x)$ is a solution of the differential equation:		
	$x^2 \frac{d^2}{dx^2} y + x \cdot \frac{d}{dx} y - (i \cdot x^2 + n^2) \cdot y = 0.$		
Algorithm	Series expansion (Abramowitz and Stegun, 1972)		
See also	bei		
Bi	(Professional) Bessel		
Syntax	Bi(x)		
Description	Returns the value of the Airy function of the second kind.		
Arguments x	real number		
Comments	This function is a solution of the differential equation: d^2		
	$\frac{d^2}{dx^2}y - x \cdot y = 0 .$		
Algorithm	Asymptotic expansion (Abramowitz and Stegun, 1972)		
See also	Ai for example		
banling	Interpolation and Bradiation		
Suntax			
Syntax	$DSpline(\mathbf{vx}, \mathbf{vy}, \mathbf{u}, n)$		
Description	Returns the vector of coefficients of a B-spline of degree n , given the knot locations indicated by the values in u . The output vector becomes the first argument of the interp function.		
Arguments			
vx, vy	real vectors of the same size; elements of vx must be in ascending order		
n n	integer equal to 1, 2, or 3; represents the degree of the individual piecewise linear, quadratic, or cubic polynomial fits		
Comments	The knots, those values where the pieces fit together, are contained in the input vector u . This is unlike traditional splines (lspline, cspline, and pspline) where the knots are forced to be the values contained in the vector vx . The fact that knots are chosen or modified by the user gives bspline more flexibility than the other splines.		
See also	Ispline for more details		

bulstoer	(Professional)	Differential Equation Solving		
Syntax	bulstoer(y, x1, x2, acc, D, kmax, save)	ulstoer(y, x1, x2, acc, D, kmax, save)		
Description	Solves a differential equation using the smooth Bu estimate at $x2$.	ential equation using the smooth Bulirsch-Stoer method. Provides DE solution		
Arguments y	Several arguments for this function are the same a real vector of initial values	nents for this function are the same as described for rkfixed.		
x1, x2	real endpoints of the solution interval			
асс	real <i>acc</i> > 0 controls the accuracy of the solution; take smaller steps along the trajectory, thereby inc of <i>acc</i> around 0.001 will generally yield accurate	a small value of <i>acc</i> forces the algorithm to creasing the accuracy of the solution. Values solutions.		
$\mathbf{D}(x, \mathbf{y})$	real vector-valued function containing the derivati	ves of the unknown functions		
kmax	integer <i>kmax</i> > 0 specifies maximum number of in approximated; places an upper bound on the numb functions	specifies maximum number of intermediate points at which the solution is laces an upper bound on the number of rows of the matrix returned by these		
save	real <i>save</i> > 0 specifies the smallest allowable spaci approximated; places a lower bound on the difference column of the matrix returned by the function	cifies the smallest allowable spacing between values at which the solutions are places a lower bound on the difference between any two numbers in the first matrix returned by the function		
Comments	The specialized DE solvers Bulstoer, Rkadapt, S a number of uniformly spaced <i>x</i> -values in the integ you want the value of the solution at only the endpo stiffr instead.	zed DE solvers Bulstoer, Rkadapt, Stiffb, and Stiffr provide the solution $y(x)$ over f uniformly spaced x -values in the integration interval bounded by $x1$ and $x2$. When e value of the solution at only the endpoint, $y(x2)$, use bulstoer, rkadapt, stiffb, and 1 .		
Algorithm	Adaptive step Bulirsch-Stoer method (Press et al.,	, 1992)		
See also	rkfixed, a more general differential equation solver, for information on output and arguments.			
Bulstoer	(Professional)	Differential Equation Solving		
Syntax	Bulstoer(y, x1, x2, npts, D)			
Description	Solves a differential equation using the smooth Bu equally spaced <i>x</i> -values by repeated calls to bulston	on using the smooth Bulirsch-Stoer method. Provides DE solution at repeated calls to bulstoer.		
Arguments y	All arguments for this function are the same as de- real vector of initial values	the same as described for <i>tkfixed</i> .		
x1, x2	real endpoints of the solution interval			
npts	integer $npts > 0$ specifies the number of points bey approximated; controls the number of rows in the	ond initial point at which the solution is to be matrix output		
$\mathbf{D}(x, y)$	real vector-valued function containing the derivati	ives of the unknown functions		

Comments	When you know the solution is smooth, use the Bulstoer function instead of rkfixed. The Bulstoer function uses the Bulirsch-Stoer method which is slightly more accurate under these circumstances than the Runge-Kutta method used by rkfixed.		
Algorithm	Fixed step Bulirsch-Stoer method with adaptive intermediate steps (Press et al., 1992)		
See also	rkfixed, a more general differential equation solver, for information on output and arguments.		
bvalfit	(Professional)	Differential Equation Solving	
Syntax	bvalfit(v1, v2, x1, x2, xf, D, load1, load2, score)		
Description	Converts a boundary value differential equation to initial/terminal value problems. Useful when derivatives have a single discontinuity at an intermediate point <i>xf</i> .		
Arguments			
v1	real vector containing guesses for initial values le	real vector containing guesses for initial values left unspecified at x1	
v2	real vector containing guesses for initial values le	ft unspecified at x2	
x1, x2	real endpoints of the interval on which the solution to the DEs are evaluated		
xf	point between $x1$ and $x2$ at which the trajectories of the solutions beginning at $x1$ and those beginning at $x2$ are constrained to be equal		
$\mathbf{D}(x, \mathbf{y})$	real <i>n</i> -element vector-valued function containing	the derivatives of the unknown functions	
load1(<i>x1</i> , v1)	real vector-valued function whose <i>n</i> elements correspond to the values of the <i>n</i> unknown functions at xI . Some of these values are constants specified by your initial conditions. If a value is unknown, you should use the corresponding guess value from v1		
load2(<i>x</i> 2, v 2)	analogous to load1 but for values taken by the <i>n</i> unknown functions at <i>x</i> 2		
score(xf, y)	real <i>n</i> -element vector-valued function used to specify how you want the solutions to match at xf One usually defines score(xf , \mathbf{y}) := \mathbf{y} to make the solutions to all unknown functions match up at xf		

```
Example
```

$$\begin{split} & \text{Solve} = \mathbf{y}^{\mathbf{x}} = \begin{pmatrix} \mathbf{y} \\ -\mathbf{y} \end{pmatrix} = & \text{for } \mathbf{x} \neq \mathbf{i} \\ & \text{for } \mathbf{x} \neq \mathbf{0} \\ & \text{for } \mathbf{x} \neq \mathbf{0} \\ \end{pmatrix} \quad \text{where } \mathbf{y}(1) = 1 \quad \text{confluct}(1) = 2 \\ & \text{if } \mathbf{y} \Rightarrow \begin{bmatrix} \mathbf{x}_1 \\ (\mathbf{x} \neq 0) & \mathbf{y}_0 + (\mathbf{x} \neq 0) & -\mathbf{y}_0 \\ (\mathbf{x} \neq 0) & \mathbf{y}_0 + (\mathbf{x} \neq 0) & -\mathbf{y}_0 \end{bmatrix} \\ & \text{wh}_0 & \approx \mathbf{1} \qquad \mathbf{e} - \text{queres value for } \mathbf{y}(1) \qquad \text{af } \mathbf{y} = \mathbf{0} \quad \mathbf{e} - \text{point of discussionally} \\ & \text{for aft}(\mathbf{x} + \mathbf{y}) + \mathbf{y} \quad \begin{pmatrix} \mathbf{1} \\ \mathbf{y}^{\mathbf{1}}_0 \end{pmatrix} \stackrel{\mathbf{e} - \mathbf{y}(-1) \\ \mathbf{e} - \text{queres value for } \mathbf{y}'(1) \\ & \text{for aft}(\mathbf{x} + \mathbf{y}) + \mathbf{y} \quad \begin{pmatrix} \mathbf{1} \\ \mathbf{y}^{\mathbf{1}}_0 \end{pmatrix} \stackrel{\mathbf{e} - \mathbf{y}(-1) \\ \mathbf{e} - \text{queres value for } \mathbf{y}'(1) \\ & \text{for aft}(\mathbf{x} + \mathbf{y}) = \begin{pmatrix} \mathbf{z} \\ \mathbf{y}^{\mathbf{2}}_0 \end{pmatrix} \stackrel{\mathbf{e} - \mathbf{y}(-1) \\ \mathbf{e} - \mathbf{queres value for } \mathbf{y}'(1) \\ & \text{for aft}(\mathbf{x} + \mathbf{y}) = \mathbf{y} \quad \mathbf{e} - \text{for aft} \text{ indificant for } \mathbf{y}'(1) \\ & \text{scene}(\mathbf{x} + \mathbf{y}) = \mathbf{y} \quad \mathbf{e} - \text{for aft} \text{ indificant for } \mathbf{y}'(1) \\ & \text{scene}(\mathbf{x} + \mathbf{y}) = \mathbf{y} \quad \mathbf{e} - \text{for aft} \text{ indificant for } \mathbf{y}'(1) \\ & \text{for aft}(\mathbf{y} + \mathbf{x} + \mathbf{y}) = \mathbf{y} \quad \mathbf{e} - \text{for aft} \text{ indificant for } \mathbf{y}'(1) \\ & \text{for aft}(\mathbf{y} + \mathbf{x} + \mathbf{y}) = \mathbf{y} \quad \mathbf{e} - \text{for aft} \text{ indificant for } \mathbf{y}'(1) \\ & \text{for aft}(\mathbf{y} + \mathbf{x} + \mathbf{y}) = \mathbf{y} \quad \mathbf{e} - \text{for aft} \text{ indificant} \mathbf{y} = \mathbf{y} \quad \mathbf{y} \in \mathbf{y} \\ & \text{for aft}(\mathbf{y} + \mathbf{y} + \mathbf{y}) = \mathbf{y} \quad \mathbf{e} - \text{for aft} \text{ indificant} \mathbf{y} = \mathbf{y} \quad \mathbf{y} \\ & \text{for aft}(\mathbf{y} + \mathbf{y}) = \mathbf{y} \quad \mathbf{y} \quad \mathbf{y} \quad \mathbf{y} \quad \mathbf{y} \quad \mathbf{y} \\ & \text{for aft}(\mathbf{y} + \mathbf{y}) = \mathbf{y} \quad \mathbf{y} \quad \mathbf{y} \quad \mathbf{y} \quad \mathbf{y} \\ & \text{for aft}(\mathbf{y} + \mathbf{y}) = \mathbf{y} \quad \mathbf{y} \quad \mathbf{y} \quad \mathbf{y} \quad \mathbf{y} \quad \mathbf{y} \\ & \text{for aft}(\mathbf{y} + \mathbf{y}) = \mathbf{y} \quad \mathbf{y} \\ & \text{for aft}(\mathbf{y} + \mathbf{y}) = \mathbf{y} \quad \mathbf{y} \quad \mathbf{y} \quad \mathbf{y} \quad \mathbf{y} \\ & \text{for aft}(\mathbf{y} + \mathbf{y}) = \mathbf{y} \quad \mathbf{y} \quad \mathbf{y} \quad \mathbf{y} \\ & \text{for aft}(\mathbf{y} + \mathbf{y}) = \mathbf{y} \quad \mathbf{y} \quad \mathbf{y} \quad \mathbf{y} \quad \mathbf{y} \quad \mathbf{y} \quad \mathbf{y} \\ & \text{for aft}(\mathbf{y} + \mathbf{y}) = \mathbf{y} \quad \mathbf{y} \quad \mathbf{y} \quad \mathbf{y} \quad \mathbf{y} \quad \mathbf{y} \quad \mathbf{y} \\ & \text{for aft}(\mathbf{y} + \mathbf{y}) = \mathbf{y} \quad \mathbf{y$$

Comments	If you have information at the initial and terminal points, then use sbval. If, instead, you know something about the solution and its first $n-1$ derivatives at some intermediate value xf , then use bvalfit.
	bvalfit solves a two-point boundary value problem of this type by shooting from the endpoints and matching the trajectories of the solution and its derivatives at the intermediate point. bvalfit is especially useful when a derivative has a discontinuity somewhere in the integration interval, as the above example illustrates. bvalfit does not return a solution to a differential equation. It merely computes the initial values the solution must have in order for the solution to match the final values you specify. You must then take the initial values returned by bvalfit and solve the resulting initial value problem using rkfixed or any of the other more specialized DE solvers.
Algorithm	Shooting method with 4th order Runge-Kutta method (Press et al., 1992)
See also	rkfixed, for more information on output and arguments.
ceil	Truncation and Round-off

UUII		Indification and recard on
Syntax	ceil(x)	
Description	Returns the least integer $\geq x$.	
Arguments x	real number	
See also	floor for more details, round, trunc	
cfft		Fourier Transform
Syntax	cfft(A)	
Description	Returns the fast discrete Fourier transform of complex data (intervals in the time domain). Returns an array of the same	representing measurements at regular e size as its argument.

Arguments

A real or complex matrix or vector

Comments There are two reasons why you may not be able to use the fft/ifft Fourier transform pair discussed elsewhere:

- The data may be complex-valued, hence Mathcad can no longer exploit the symmetry present in the real-valued case.
- The data vector might not have exactly 2^m data points in it, hence Mathcad cannot take advantage of the efficient FFT algorithm used by the fft/ifft pair.

Although the cfft/icfft pair works on arrays of any size, the functions work significantly faster when the number of rows and columns contains many smaller factors. Vectors with length 2^m fall into this category, as do vectors having lengths like 100 or 120. Conversely, a vector whose length is a large prime number slows down the Fourier transform algorithm.

- Algorithm Singleton method (Singleton, 1986)
- See also fft for more details

CFFT

Syntax CFFT(A)

DescriptionReturns the fast discrete Fourier transform of complex data (representing measurements at regular
intervals in the time domain). Returns an array of the same size as its argument.
Identical to cfft(A), except uses a different normalizing factor and sign convention (see example).

real or complex matrix or vector

Arguments

Α

Example

Algorithm Singleton method (Singleton, 1986)

See also fft for more details

cholesky	(Professional)	Vector and Matrix	
Syntax	cholesky(M)		
Description	Returns a lower triangular matrix L satisfying the equation $\mathbf{L} \cdot \mathbf{L}^{T} = \mathbf{M}$.		
Arguments M	real, symmetric, positive definite, square matrix		
Comments	cholesky takes M to be symmetric, in the sense that it uses only the upper triangular part of M and assumes it to match the lower triangular part.		
cnorm		Probability Distribution	
Syntax	cnorm(x)		
Description	Returns the cumulative standard normal distribution. Same as p	norm(<i>x</i> , 0, 1).	
Arguments <i>x</i>	real number		
Comments	cnorm is provided mainly for compatibility with documents cre Mathcad.	ated in earlier versions of	
cols		Vector and Matrix	
Syntax	cols(A)		
Description	Returns the number of columns in array A.		
Arguments A	matrix or vector		
Example	$ \begin{array}{l} \mbox{Motion} M & \ldots \\ M & \simeq \begin{pmatrix} D & 1 \\ S & S \\ S & -2 \end{pmatrix} \mbox{coils} \mid M \) \ = \ 2 \qquad \mbox{c-Platarm not of rows and} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
See also	rows		

combin	Number Theory/Combinatorics		
Syntax	combin(n, k)		
Description	Returns the number of subsets each of size k that can be formed from n objects.		
Arguments n, k	integers, $0 \le k \le n$		
Comments	Each such subset is known as a combination. The number of combinations is $C_{k}^{n} = \frac{n!}{k! \cdot (n-k)!}$.		
See also	permut $(n-k)$		
concat	(Professional)	String	
Syntax	concat(<i>S1</i> , <i>S2</i> , <i>S3</i> ,)		
Description	Appends string $S2$ to the end of string $S1$, string $S3$ to the end of string $S3$.	S2, and so on.	
Arguments <i>S1, S2, S3,</i>	string expressions		
cond1	(Professional)	Vector and Matrix	
Syntax	cond1(M)		
Description	Returns the condition number of the matrix M based on the L_1 norm.		
Arguments M	real or complex square matrix		
cond2	(Professional)	Vector and Matrix	
Syntax	cond2(M)		
Description	Returns the condition number of the matrix M based on the L_2 norm.		
Arguments M	real or complex square matrix		
Algorithm	Singular value computation (Wilkinson and Reinsch, 1971)		
conde	(Professional)	Vector and Matrix	
Syntax	conde(M)		
Description	Returns the condition number of the matrix \mathbf{M} based on the Euclidean r	orm.	
Arguments M	real or complex square matrix		

condi	(Professional)	Vector and Matrix
Syntax	condi(M)	
Description	Returns the condition number of the matrix \mathbf{M} based on the infinity	norm.
Arguments M	real or complex square matrix	
corr		Statistics
Syntax	corr(A, B)	
Description	Returns the Pearson correlation coefficient for the elements in two r corr(A, B) = $\frac{cvar(A, B)}{stdev(A) \cdot stdev(B)}$	$n \times n$ arrays A and B :
Arguments A, B	real or complex $m \times n$ matrices or vectors of the same size	
See also	cvar	
cos		Trigonometric
Syntax	$\cos(z)$, for z in radians; $\cos(z \cdot \deg)$, for z in degrees	
Description	Returns the cosine of <i>z</i> .	
Arguments z	real or complex number	
cosh		Hyperbolic
Syntax	$\cosh(z)$	
Description	Returns the hyperbolic cosine of <i>z</i> .	
Arguments z	real or complex number	
cot		Trigonometric
Syntax	$\cot(z)$, for z in radians; $\cot(z \cdot \deg)$, for z in degrees	
Description	Returns the cotangent of <i>z</i> .	
Arguments z	real or complex number	

		11
coth		Hyperbolic
Syntax	$\operatorname{coth}(z)$	
Description	Returns the hyperbolic cotangent of <i>z</i> .	
Arguments z	real or complex number	
CSC		Trigonometric
Syntax	CSC(z), for z in radians; $CSC(z \cdot deg)$, for z in degrees	
Description	Returns the cosecant of <i>z</i> .	
Arguments z	real or complex number	
csch		Hyperbolic
Syntax	$\operatorname{csch}(z)$	
Description	Returns the hyperbolic cosecant of <i>z</i> .	
Arguments z	real or complex number	
csgn		Complex Numbers
Syntax	csgn(z)	
Description	Returns 0 if $z=0$, 1 if $\operatorname{Re}(z)>0$ or ($\operatorname{Re}(z)=0$ and $\operatorname{Im}(z)>0$), -1 otherwise.	
Arguments z	real or complex number	
See also	sign, signum	

csort	Sorting
Syntax	$csort(\mathbf{A}, j)$
Description	Sorts the rows of the matrix \mathbf{A} by placing the elements in column <i>j</i> in ascending order. The result is the same size as \mathbf{A} .
Arguments A j	$m \times n$ matrix or vector integer, $0 \le j \le n - 1$
Algorithm	Heap sort (Press et al., 1992)
See also	sort for more details, rsort
cspline	Interpolation and Prediction
One-dimension	nal Case
Syntax	cspline(vx, vy)
Description	Returns the vector of coefficients of a cubic spline with cubic ends. This vector becomes the first argument of the interp function.
Arguments vx, vy	real vectors of the same size; elements of \mathbf{vx} must be in ascending order
Two-dimension	nal Case
Syntax	cspline(Mxy, Mz)
Description	Returns the vector of coefficients of a two-dimensional cubic spline, constrained to be cubic at region boundaries spanned by Mxy . This vector becomes the first argument of the interp function.
Arguments	
Мху	$n \times 2$ matrix whose elements, $Mxy_{i,0}$ and $Mxy_{i,1}$, specify the <i>x</i> - and <i>y</i> -coordinates along the <i>diagonal</i> of a rectangular grid. This matrix plays exactly the same role as vx in the one- dimensional case described above. Since these points describe a diagonal, the elements in each column of Mxy must be in ascending order $(Mxy_{i,k} < Mxy_{i,k})$, whenever $i < j$.
Mz	$n \times n$ matrix whose <i>ij</i> th element is the <i>z</i> -coordinate corresponding to the point $x = Mxy_{i,0}$ and $y = Mxy_{j,1}$. Mz plays exactly the same role as vy does in the one-dimensional case above.
Algorithm	Tridiagonal system solving (Press et al., 1992; Lorczak)
See also	Ispline for more details

cvar	Statistics
Syntax	cvar(A, B)
Description	Returns the covariance of the elements in two $m \times n$ arrays A and B :
	$\operatorname{cvar}(\mathbf{A}, \mathbf{B}) = \frac{1}{mn} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} [A_{i,j} - \operatorname{mean}(\mathbf{A})] \overline{[B_{i,j} - \operatorname{mean}(\mathbf{B})]}$, where the bar indicates
A	complex conjugation.
Arguments A, B	real or complex $m \times n$ matrices or vectors
See also	corr
dbeta	Probability Density
Syntax	dbeta(<i>x</i> , <i>s1</i> , <i>s2</i>)
Description	Returns the probability density for a beta distribution: $\frac{\Gamma(s_1 + s_2)}{\Gamma(s_1) \cdot \Gamma(s_2)} \cdot x^{s_1 - 1} \cdot (1 - x)^{s_2 - 1}$.
Arguments x s1, s2	real number, $0 < x < 1$ real shape parameters, $s_1 > 0, s_2 > 0$
dbinom	Probability Density
Syntax	dbinom(k, n, p)
Description	Returns $Pr(X = k)$ when the random variable X has the binomial distribution:
	$\frac{n!}{k!(n-k)!}p^k(1-p)^{n-k}$.
Arguments	
k, n	integers, $0 \le k \le n$ real number $0 \le n \le 1$
P	
dcauchy	Probability Density
Syntax	dcauchy(x , l , s)
Description	Returns the probability density for the Cauchy distribution: $(\pi s(1 + ((x - l)/s)^2))^{-1}$.
Arguments x l	real number real location parameter
S	real scale parameter, $s > 0$

dchisq

Syntax	dchisq(x, d)
Description	Returns the probability density for the chi-squared distribution: $\frac{e^{-x/2}}{2\Gamma(d/2)} \left(\frac{x}{2}\right)^{(d/2-1)}$.
Arguments	
x	real number, $x \ge 0$

d integer degrees of freedom, d > 0

dexp

Probability Density

Syntax	dexp(x, r)
--------	------------

Description Returns the probability density for the exponential distribution: re^{-rx} .

Arguments

x	real number, $x \ge 0$
r	real rate, $r > 0$

dF

Probability Density

-		
Syntax	dF(x, a)	d1, d2)

Description Returns the probability density for the F distribution:

$$\frac{d_1^{d_1/2}d_2^{d_2/2}\Gamma((d_1+d_2)/2)}{\Gamma(d_1/2)\Gamma(d_2/2)} \cdot \frac{x^{(d_1-2)/2}}{(d_2+d_1x)^{(d_1+d_2)/2}}$$

Arguments

xreal number, $x \ge 0$ d1, d2integer degrees of freedom, $d_1 > 0, d_2 > 0$

dgamma

Probability Density

Syntaxdgamma(x, s)DescriptionReturns the probability density for the gamma distribution: $\frac{x^{s-1}e^{-x}}{\Gamma(s)}$.Argumentsxreal number, $x \ge 0$ sreal shape parameter, s > 0

dgeom **Probability Density** Syntax dgeom(k, p)Description Returns Pr(X = k) when the random variable X has the geometric distribution: $p(1-p)^k$. Arguments integer, $k \ge 0$ k real number, 0р dhypergeom **Probability Density** Syntax dhypergeom(*m*, *a*, *b*, *n*) Description Returns Pr(X = m) when the random variable X has the hypergeometric distribution: $\binom{a}{m} \cdot \binom{b}{n-m} / \binom{a+b}{n}$ where $max\{0, n-b\} \le m \le min\{n, a\}$; 0 for *m* elsewhere. Arguments integers, $0 \le m \le a$, $0 \le n - m \le b$, $0 \le n \le a + b$ m, a, b, n diag Vector and Matrix (Professional) Syntax diag(v) Description Returns a diagonal matrix containing, on its diagonal, the elements of v. Arguments real or complex vector v dlnorm **Probability Density** Syntax dlnorm(x, μ , σ) Returns the probability density for the lognormal distribution: $\frac{1}{\sqrt{2\pi\sigma_r}} \exp\left(-\frac{1}{2\sigma^2}(\ln(x)-\mu)^2\right)$. Description

Arguments

 $\begin{array}{ll} x & \text{real number, } x \ge 0 \\ \mu & \text{real logmean} \end{array}$

 σ real log deviation, $\sigma > 0$

dlogis

Syntax	dlogis(x, l, s)
Description	Returns the probability density for the logistic distribution: $\frac{\exp(-(x-l)/s)}{s(1+\exp(-(x-l)/s))^2}.$
Arguments	
x	real number
l	real location parameter
S	real scale parameter, $s > 0$

dnbinom

Probability Density

Syntax	dnbinom(k, n, p)
Description	Returns $Pr(X = k)$ when the random variable X has the negative binomial distribution:
	$\binom{n+k-1}{k}p^n(1-p)^k$

Arguments

k, n integers, n > 0 and $k \ge 0$ p real number, 0

dnorm

Probability Density

Syntax	dnorm(x, μ, σ)
Description	Returns the probability density for the normal distribution: $\frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$.
Arguments	<i>_</i> 2.00

х	real number
μ	real mean
σ	real standard deviation, $\sigma > 0$

Example

dpois	Probability Density
Syntax	dpois(k , λ)
Description	Returns Pr($X = k$) when the random variable X has the Poisson distribution: $\frac{\lambda^k}{k!}e^{-\lambda}$.
Arguments k λ	integer, $k \ge 0$ real mean, $\lambda > 0$
dt	Probability Density
Syntax	dt(x, d)
Description	Returns the probability density for Student's <i>t</i> distribution: $\frac{\Gamma((d+1)/2)}{\Gamma(d/2)\sqrt{\pi d}} \left(1 + \frac{x^2}{d}\right)^{-(d+1)/2}$.
Arguments x d	real number integer degrees of freedom, $d > 0$
dunif	Probability Density
Syntax	dunif(x, a, b)
Description	Returns the probability density for the uniform distribution: $\frac{1}{h-a}$.
Arguments x a, b	real number, $a \le x \le b$ real numbers, $a < b$
dweibull	Probability Density
Syntax	dweibull(x, s)
Description	Returns the probability density for the Weibull distribution: $sx^{s-1} \exp(-x^s)$.
Arguments x s	real number, $x \ge 0$ real shape parameter, $s > 0$
eigenvals	Vector and Matrix
Syntax	eigenvals(M)
Description	Returns a vector of eigenvalues for the matrix M .
Arguments M	real or complex square matrix

	$A \approx \begin{pmatrix} 0 & -7 & 6 \\ 3 & 0 & 10 \\ 12 & 5 & -1 \end{pmatrix} \qquad c \approx aigenvalu(A) \qquad c \approx \begin{pmatrix} 3.005 + 1.1346 \\ 3.005 - 1.1346 \\ -7.605 \end{pmatrix}$		
Algorithm	Reduction to Hessenberg form coupled with QR decomposition (Press et al., 1992)		
See also	eigenvec, eigenvecs		
eigenvec	Vector and Matrix		
Syntax	eigenvec(M, z)		
Description	Returns a vector containing the normalized eigenvector corresponding to the eigenvalue z of the square matrix M .		
Arguments M	real or complex square matrix real or complex number		
Algorithm	Inverse iteration (Press et al., 1992; Lorczak)		
See also	eigenvals, eigenvecs		
eigenvecs	(Professional) Vector and Matrix		
Syntax	eigenvecs(M)		
Description	Returns a matrix containing the normalized eigenvectors corresponding to the eigenvalues of the matrix \mathbf{M} . The <i>n</i> th column of the matrix is the eigenvector corresponding to the <i>n</i> th eigenvalue returned by eigenvals.		
Arguments M	real or complex square matrix		
Algorithm	Reduction to Hessenberg form coupled with QR decomposition (Press et al., 1992)		
See also	eigenvals, eigenvec		

Finding eigenvalues and eigenvectors of a real matrix			
$\mathbf{A} = \begin{pmatrix} 1 & -2 & 0 \\ 0 & 0 & 10 \\ 2 & 0 & -1 \end{pmatrix} \qquad \mathbf{c} = \text{ eigenvals} (\mathbf{A}) \qquad \mathbf{c} = \begin{pmatrix} 0.106 \\ 7.497 \\ 1.7.602 \end{pmatrix}$			
To find all the corresponding signsvectors at once (Mathcad Protessical) $\mathbf{v} = \operatorname{signsvecs}(\mathbf{A}) \mathbf{v} = \begin{pmatrix} 0.873 & 0.244 & -0.554 \\ -0.408 & 0.81 & -0.574 \\ -0.266 & 0.584 & 0.908 \end{pmatrix}$			
The first column of v is the eigenvector corresponding to 0.105, the first element of c. Similarly, the second column of v is the eigenvector corresponding to 7.492, the second element of c.			

erf

Special

Syntax	erf(x)	
Description	Returns the error function $\operatorname{erf}(x) = \int_0^x \frac{2}{\sqrt{\pi}} e^{-t^2} dt$.	
Arguments x	real number	
Algorithm	Continued fraction expansion (Abramowitz and Stegun, 1972; Lorczak)	
See also	erfc	
erfc		Special
erfc Syntax	erfc(<i>x</i>)	Special
erfc Syntax Description	$\operatorname{erfc}(x)$ Returns the complementary error function $\operatorname{erfc}(x) := 1 - \operatorname{erf}(x)$.	Special
erfc Syntax Description Arguments	erfc(x) Returns the complementary error function $erfc(x) := 1 - erf(x)$. real number	Special
erfc Syntax Description Arguments x Algorithm	erfc(x) Returns the complementary error function $erfc(x) := 1 - erf(x)$. real number Continued fraction expansion (Abramowitz and Stegun, 1972; Lorczak)	Special

error	(Professional) Stri	ng
Syntax	error(S)	
Description	Returns the string S as an error message.	
Arguments S	string	
Example	$\begin{split} f(x) &= \theta \bigg(x (S_{-} x \frac{Z_{-}}{x} \text{-error} ("x should be less than S") \bigg) \\ \hline \\ $	
Comments	Mathcad's built-in error messages appear as "error tips" when a built-in function is used incorrectly or could not return a result.	
	Use the string function error to define specialized error messages that will appear when you user-defined functions are used improperly or cannot return answers. This function is especial useful for trapping erroneous inputs to Mathcad programs you write.	r lly
	When Mathcad encounters the error function in an expression, it highlights the expression in red. When you click on the expression, the error message appears in a tool tip that hovers ov the expression. The text of the message is the string argument you supply to the error function.	n er on.
exp	Log and Exponent	ial
Syntax	exp(z)	
Description	Returns the value of the exponential function e^z .	
Arguments z	real or complex number	
fft	Fourier Transfo	rm
Syntax	fft(v)	
Description	Returns the fast discrete Fourier transform of real data. Returns a vector of size $2^{n-1} + 1$.	
Arguments v	real vector with 2^n elements (representing measurements at regular intervals in the time domain), where <i>n</i> is an integer, $n > 0$.	

Comments

When you define a vector **v** for use with Fourier or wavelet transforms, be sure to start with v_0 (or change the value of ORIGIN). If you do not define v_0 , Mathcad automatically sets it to zero. This can distort the results of the transform functions.

Mathcad comes with two types of Fourier transform pairs: fft/ifft and cfft/icfft. These functions can be applied only to discrete data (i.e., the inputs and outputs are vectors and matrices only). You cannot apply them to continuous data.

Use the fft and ifft functions if:

- the data values in the time domain are real, and
- the data vector has 2^m elements.

Use the cfft and icfft functions in all other cases.

The first condition is required because the fft/ifft pair takes advantage of the fact that, for real data, the second half of the transform is just the conjugate of the first. Mathcad discards the second half of the result vector to save time and memory. The cfft/icfft pair does not assume symmetry in the transform; therefore you *must* use this pair for complex valued data. Because the real numbers are just a subset of the complex numbers, you can use the cfft/icfft pair for real numbers as well.

The second condition is required because the fft/ifft transform pair uses a highly efficient fast Fourier transform algorithm. In order to do so, the vector you use with fft must have 2^m elements. The cfft/icfft Fourier transform pair uses an algorithm that permits vectors as well as matrices of arbitrary size. When you use this transform pair with a matrix, you get back a two-dimensional Fourier transform.

If you used fft to get to the frequency domain, you *must* use ifft to get back to the time domain. Similarly, if you used cfft to get to the frequency domain, you *must* use icfft to get back to the time domain.

Different sources use different conventions concerning the initial factor of the Fourier transform and whether to conjugate the results of either the transform or the inverse transform. The functions fft, ifft, cfft, and icfft use 1/N as a normalizing factor and a positive exponent in going from the time to the frequency domain. The functions FFT, IFFT, CFFT, and ICFFT use 1/N as a normalizing factor and a negative exponent in going from the time to the frequency domain. Be sure to use these functions in pairs. For example, if you used CFFT to go from the time domain to the frequency domain, you *must* use ICFFT to transform back to the time domain.

The elements of the vector returned by fft satisfy the following equation:

$$c_j = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} v_k e^{2\pi i (j/n)k}$$

In this formula, n is the number of elements in \mathbf{v} and i is the imaginary unit.

The elements in the vector returned by the fft function correspond to different frequencies. To recover the actual frequency, you must know the sampling frequency of the original signal. If **v** is an *n*-element vector passed to the fft function, and the sampling frequency is f_s , the frequency corresponding to c_k is

$$f_k = \frac{k}{n} \cdot f_s$$

Therefore, it is impossible to detect frequencies above the sampling frequency. This is a limitation not of Mathcad, but of the underlying mathematics itself. In order to correctly recover a signal from the Fourier transform of its samples, you must sample the signal with a frequency of at least twice its bandwidth. A thorough discussion of this phenomenon is outside the scope of this manual but within that of any textbook on digital signal processing.

Algorithm Cooley-Tukey (Press et al., 1992)

FFT	Fourier Transform	
Syntax	FFT(v)	
Description	Identical to fft(v), except uses a different normalizing factor and sign convention. Returns a vector of size $2^{n-1} + 1$.	
Arguments		
V	real vector with 2^n elements (representing measurements at regular intervals in the time domain), where <i>n</i> is an integer, $n > 0$.	
Comments	The definitions for the Fourier transform discussed in the fft entry are not the only ones used. For example, the following definitions for the discrete Fourier transform and its inverse appear in Ronald Bracewell's <i>The Fourier Transform and Its Applications</i> (McGraw-Hill, 1986): $F(\upsilon) = \frac{1}{n} \sum_{\tau=1}^{n} f(\tau) e^{-2\pi i (\upsilon/n)\tau} f(\tau) = \sum_{\upsilon=1}^{n} F(\upsilon) e^{2\pi i (\tau/n)\upsilon}$	
	These definitions are very common in engineering literature. To use these definitions rather than those presented in the last section, use the functions FFT, IFFT, CFFT, and ICFFT. These differ from those discussed in the last section as follows:	
	• Instead of a factor of $1/\sqrt{n}$ in front of both forms, there is a factor of $1/n$ in front of the transform and no factor in front of the inverse.	
	• The minus sign appears in the exponent of the transform instead of in its inverse.	
	The functions FFT, IFFT, CFFT, and ICFFT are used in exactly the same way as the functions fft, ifft, cfft, and icfft.	
Algorithm	Cooley-Tukey (Press et al., 1992)	
See also	fft for more details	
fhyper	(Professional) Special	
Syntax	fhyper(<i>a</i> , <i>b</i> , <i>c</i> , <i>x</i>)	

Description Returns the value of the Gauss hypergeometric function ${}_{2}F_{1}(a, b; c; x)$.

Arguments

a, *b*, *c*, *x* real numbers, -1 < x < 1

Comments

The hypergeometric function is a solution of the differential equation

$$x \cdot (1-x) \cdot \frac{d^2}{dx^2} y + (c - (a+b+1) \cdot x) \cdot \frac{d}{dx} y - a \cdot b \cdot y = 0 \quad .$$

Many functions are special cases of the hypergeometric function, e.g., elementary ones like

 $\ln(1 + x) = x \cdot \text{fhyper}(1, 1, 2, -x), \quad \text{asin}(x) = x \cdot \text{fhyper}\left(\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, x^2\right),$ and more complicated ones like Legendre functions.

Algorithm Series expansion (Abramowitz and Stegun, 1972)

Find

Solving

Syntax Find(var1, var2, ...)

Description Returns values of *var1*, *var2*, ... which solve a prescribed system of equations, subject to prescribed inequalities. The number of arguments matches the number of unknowns. Output is a scalar if only one argument; otherwise it is a vector of answers.

Arguments

var1, var2, ...

2, ... real or complex variables; *var1*, *var2*,.. must be assigned guess values before using Find.

Examples

Selve the equation:	$x^2 + 10 = e^{\pi}$
Gaune a ventuer	x = 2
Given	$\kappa^Z + 10 = e^{\pi}$
	$\mathbf{a} := Find(\mathbf{x})$
Recolt in:	a = 2.919
Verity result:	$a^2 + 10 = 18.62$
	e ⁿ = 18.52

Example 1: A solve block with one equation in one unknown.

```
Intersection of Circle and Inc.
General Verlager:
                        \kappa = 1
                        y := 1
Given.
                        \mathbf{x}^{\mathbf{Z}} + \mathbf{y}^{\mathbf{Z}} = \mathbf{0}
                                                 Circle
                        x + y = 2
                                                 Line.
                        3 \le 1
                                                 hereave little
                        \gamma > 2
                                                 CONTRACTOR (
                        local]

    Find(x, y)

                          era i
                        xxal = -0.414
  Results:
                        y_{00} = 2.414
  Check that point is an actual polylox:
    \operatorname{sym}^2 + \operatorname{sym}^2 = 6
                                                 zeral + yval = 2
```

Example 2: A solve block with both equations and inequalities.

Example 3: Solving an equation repeatedly (by defining the Reynolds number R to be a range variable).

```
11
            а.
               - 41
                                     Two methods for computing a metrix square soot
 181 m.
       ÷.
            181
              - 12
        10
           小 探
Vec := elseevecsi Wa
                           Wate or discal alignmented M15.
                 0.639 0.38
                                       5 - 4 - 5 - 4
                 2,915 - 0.31
                        7.676
             which carents
                  Glynn
                       x^2 + ix
                              0.520 0.0739 0.300
                                                                        ander blind
                  Field Co. 4.
                              化磷酸 化合物 人名德尔
                                     -0.34 7.536
```


Example 5: A solve block for computing the solution of a matrix equation.

Comments Mathcad Professional lets you numerically solve a system of up to 200 simultaneous equations in 200 unknowns. (For Mathcad Standard, the upper limit is 50 equations in 50 unknowns.) If you aren't sure that a given system possesses a solution but need an approximate answer which minimizes error, use Minerr instead. To solve an equation symbolically, that is, to find an exact numerical answer in terms of elementary functions, choose **Solve for Variable** from the **Symbolic** menu or use the **solve** keyword.

There are four steps to solving a system of simultaneous equations:

- 1. Provide initial guesses for all the unknowns you intend to solve for. These give Mathcad a place to start searching for solutions. Use complex guess values if you anticipate complex solutions; use real guess values if you anticipate real solutions.
- 2. Type the word Given. This tells Mathcad that what follows is a system of equality or inequality constraints. You can type Given or given in any style. Just don't type it while in a text region.
- 3. Type the equations and inequalities in any order below the word Given. Use [Ctrl]= to type "=."

4. Finally, type the Find function with your list of unknowns. You can't put numerical values in the list of unknowns: for example, Find(2) in Example 1 isn't permitted. Like given, you can type Find or find in any style.

The word Given, the equations and inequalities that follow, and the Find function form a *solve block*.

Example 1 shows a worksheet that contains a solve block for one equation in one unknown. For one equation in one unknown, you can also use the **root** or **polyroots** functions.

Mathcad is very specific about the types of expressions that can appear between Given and Find. See Example 2. The types of allowable constraints are z=w, x>y, x<y, $x\ge y$ and $x\le y$. Mathcad does not allow the following inside a solve block:

- Constraints with "≠"
- Range variables or expressions involving range variables of any kind
- Inequalities of the form a < b < c
- Any kind of assignment statement (statements like **x:=1**)

If you want to include the outcome of a solve block in an iterative calculation, see Example 3.

Solve blocks cannot be nested inside each other. Each solve block can have only one Given and one Find. You can however, define a function like f(x) := Find(x) at the end of one solve block and use this same function in another solve block.

If the solver cannot make any further improvements to the solution but the constraints are *not* all satisfied, then the solver stops and marks Find with an error message. This happens whenever the difference between successive approximations to the solution is greater than TOL *and*:

- The solver reaches a point where it cannot reduce the error any further.
- The solver reaches a point from which there is no preferred direction. Because of this, the solver has no basis on which to make further iterations.
- The solver reaches the limit of its accuracy. Roundoff errors make it unlikely that further computation would increase accuracy of the solution. This often happens if you set TOL to a value below 10^{-15} .

The following problems may cause this sort of failure:

- There may actually be no solution.
- You may have given real guesses for an equation with no real solution. If the solution for a variable is complex, the solver will not find it unless the starting value for that variable is also complex.
- The solver may have become trapped in a local minimum for the error values. To find the actual solution, try using different starting values or add an inequality to keep Mathcad from being trapped in the local minimum.
- The solver may have become trapped on a point that is not a local minimum, but from which it cannot determine where to go next. Again, try changing the initial guesses or adding an inequality to avoid the undesirable stopping point.
- It may not be possible to solve the constraints to within the desired tolerance. Try defining TOL with a larger value somewhere above the solve block. Increasing the tolerance changes what Mathcad considers close enough to call a solution.

In Mathcad Professional, the context menu (available via right mouse click) associated with Find contains the following options:

- AutoSelect chooses an appropriate algorithm
- Linear option indicates that the problem is linear (and thus applies linear programming methods to the problem); guess values for *var1*, *var2*,... are immaterial (can all be zero)

	 Nonlinear option – indicates that the problem is nonlinear (and thus applies these gen methods to the problem: the conjugate gradient solver; if that fails to converge, the Le berg-Marquadt solver; if that too fails, the quasi-Newton solver) – guess values for va var2, greatly affect the solution 	
• Quadratic option (appears only if the Mathcad Expert Solver product is installe that the problem is quadratic (and thus applies quadratic programming metho problem); guess values for <i>var1</i> , <i>var2</i> , are immaterial (can all be zero)		
	• Advanced options – applies only to the nonlinear conjugate gradient and the quasi-Newton solvers	
	These options provide you more control in trying different algorithms for testing and comparison. You may also adjust the values of the built-in variables CTOL and TOL. The <i>constraint tolerance</i> CTOL controls how closely a constraint must be met for a solution to be acceptable; if CTOL were 0.001, then a constraint such as $x < 2$ would be considered satisfied if the value of x satisfied $x < 2.001$. This can be defined or changed in the same way as the <i>convergence tolerance</i> TOL. The default value for CTOL is 0.	
Algorithm	For the non-linear case: Levenberg-Marquardt, Quasi-Newton, Conjugate Gradient For the linear case: simplex method with branch/bound techniques (Press <i>et al.</i> , 1992; Polak, 1997; Winston, 1994)	
See also	Minerr, Maximize, Minimize	

Truncation and Round-off

floor

Syntax	floor(x)
Description	Returns the greatest integer $\leq x$.
Arguments x	real number
Example	$ceil(3.25) = 4 \qquad ficor(3.25) = 3$ remations(x) $\ge x - ficor(x)$ mentions(3.45) ≥ 0.45
Comments	Can be used to define the positive fractional part of a number: $mantissa(x) := x - floor(x)$.
See also	ceil, round, trunc

Number Theory/Combinatorics
gcd(A)
Returns the largest positive integer that is a divisor of all the values in the array A . This integer is known as the greatest common divisor of the elements in A .
integer matrix or vector; all elements of A are greater than zero
Euclid's algorithm (Niven and Zuckerman, 1972)
lcm

genfit

Regression and Smoothing

Syntax	genfit(vx, vy, vg, F)	
Description	Returns a vector containing the parameters that make a function <i>f</i> of <i>x</i> and <i>n</i> parameters $u_0, u_1,, u_{n-1}$ best approximate the data in vx and vy .	
Arguments		
vx, vy	real vectors of the same size	
vg	real vector of guess values for the <i>n</i> parameters	
F	a function that returns an $n+1$ element vector containing f and its partial derivatives	

Comments	 The functions linfit and genfit are closely related. Anything you can do with linfit you can als do, albeit less conveniently, with genfit. The difference between these two functions is analogou to the difference between solving a system of linear equations and solving a system of nonlinear equations. The former is easily done using the methods of linear algebra. The latter is far mor difficult and generally must be solved by iteration. This explains why genfit needs a vector o guess values as an argument and linfit does not. The example above uses genfit to find the exponent that best fits a set of data. By decreasing the value of the built-in TOL variable, higher accuracy in genfit might be achieved. 	
Algorithm	Levenberg-Marquardt (Press <i>et al.</i> , 1992)	linght be achieved.
See also	linfit	
geninv	(Professional)	Vector and Matrix
Syntax	geninv(A)	
Description	Returns the left inverse of a matrix A .	
Arguments A	real $m \times n$ matrix, where $m \ge n$.	
Comments	If L denotes the left inverse, then $\mathbf{L} \cdot \mathbf{A} = \mathbf{I}$ where I is the ide	entity matrix with $cols(I)=cols(A)$.
Algorithm	SVD-based construction (Nash, 1979)	
genvals	(Professional)	Vector and Matrix
Syntax	genvals(M, N)	
Description	Returns a vector v of eigenvalues each of which satisfies the generalized eigenvalue equation $\mathbf{M} \cdot \mathbf{x} = v_j \cdot \mathbf{N} \cdot \mathbf{x}$ for nonzero eigenvectors x .	
Arguments M, N	real square matrices of the same size	

Exam	ole

	$\begin{split} \mathbf{H} &\simeq \begin{bmatrix} -3 & 0 & 0 \\ 3 & 0 & -4 \\ 0 & 0 & -5 \end{bmatrix} & \mathbf{H} &\simeq \begin{bmatrix} -5 & 0 & -1 \\ 0 & 0 & -3 \\ -3 & 10 & 4 \end{bmatrix} \\ \end{split}$ We doe of generalized eigenvectors: We can be explored by the generalized eigenvectors: We can be explored to the generalized eigenvectors: S \simeq genvec (M, N) $\mathbf{x} = \begin{bmatrix} 0.030 & 0.362 & -0.587 \\ 0.315 & 0.325 & -1.21 \\ 0.475 & 0.357 & -1.74 \end{bmatrix}$ S \approx evaluated is (n, 0, 2, 0, 0) Compare: Me can be explored to the generalized eigenvectors: M can be explored to the generalized eigenvectors: $\mathbf{x} = \begin{bmatrix} 0.370 & 0.362 & -0.587 \\ 0.315 & 0.357 & -1.74 \end{bmatrix}$ S \approx evaluated is (n, 0, 2, 0, 0) S \approx evaluated is (n, 0, 2, 0, 0) Explored to the generalized eigenvectors: $\mathbf{x} = \begin{bmatrix} 0.371 & 0.357 & 0.357 & -1.74 \\ 0.355 & 0.357 & -1.74 \end{bmatrix}$ S \approx evaluated is (n, 0, 2, 0, 2, 2, 2) Explored to the generalized eigenvectors: $\mathbf{H} = \begin{bmatrix} 0.571 & 0.357 & 0.357 & 0.357 & 0.357 & 0.357 & 0.356 \\ 0.360 & 0.300 \end{bmatrix}$ $\mathbf{x}_{1} (\mathbf{B} \times \mathbf{C}) = \begin{bmatrix} 0.571 & 0.357 & 0.357 & 0.357 & 0.357 & 0.356 & 0.356 \\ 0.360 & 0.300 \end{bmatrix}$
Comments	To compute the eigenvectors, use genvec.
Algorithm	Stable OZ method (Golub and Van Loan, 1989)
5	
genvecs	(Professional) Vector and Matrix
Syntax	genvecs(M, N)
Description	Returns a matrix of normalized eigenvectors corresponding to the eigenvalues in v , the vector returned by genvals. The <i>j</i> th column of this matrix is the eigenvector x satisfying the generalized eigenvalue problem $\mathbf{M} \cdot \mathbf{x} = v_j \cdot \mathbf{N} \cdot \mathbf{x}$.
Arguments	
M , N	real square matrices of the same size
Algorithm	Stable QZ method (Golub and Van Loan, 1989)
See also	genvals for example
gmean	Statistics
Syntax	gmean(A)
Description	Returns the geometric mean of the elements of A : gmean(A) = $\left(\prod_{i=1}^{m-1}\prod_{i=1}^{n-1}A_{i}\right)^{1/(mn)}$.
Arguments	$\begin{pmatrix} 1 & 1 & 1 \\ i = 0 \\ j = 0 \end{pmatrix} \stackrel{l}{=} 0$
A	real $m \times n$ matrix or vector with all elements greater than zero
See also	hmean, mean, median, mode

Her	(Professional)	Special
Syntax	Her(<i>n</i> , <i>x</i>)	
Description	Returns the value of the Hermite polynomial of degree n at x .	
Arguments n x	integer, $n \ge 0$ real number	
Comments	The <i>n</i> th degree Hermite polynomial is a solution of the differential equation: $x \cdot \frac{d^2}{dx^2}y - 2 \cdot x \cdot \frac{d}{dx}y + 2 \cdot n \cdot y = 0.$	
Algorithm	Recurrence relation (Abramowitz and Stegun, 1972)	
hist		Statistics
Syntax	hist(intervals, A)	
Description	Returns a vector containing the frequencies with which values in A fall in the interva by the intervals vector. The resulting histogram vector is one element shorter that	als represented an intervals .
Arguments intervals A	real vector with elements in ascending order real matrix	
Example	$i > 0, 1 \cdot 200 \qquad \text{ data}_i > 0 \left(\frac{2 \sqrt{\sin(2i)}}{2} \right)^2$	
	$ \begin{array}{c} \mathbf{x} = 10 \qquad \mathbf{j} = 0, \ \mathbf{x} = \mathbf{x} \\ \mathbf{k} \simeq 0, \ 1 = \mathbf{n} = 1 \\ \text{intervals} \mathbf{x} = \frac{1}{2} \\ \text{intervals} \mathbf{x} = \frac{1}{2} \\ \mathbf{f} = \text{intervals}, \ \mathbf{x} = \frac{1}{2} \\ \mathbf{f} = \text{intervals}, \ \mathbf{x} = \frac{1}{2} \\ \mathbf{x} = $	

ē,

e Internation **Comments** The **intervals** vector contains the endpoints of subintervals constituting a partition of the data. The result of the hist function is a vector \mathbf{f} , in which f_i is the number of values in \mathbf{A} satisfying the condition $intervals_i \leq value < intervals_{i+1}$.

Mathcad ignores data points less than the first value in **intervals** or greater than the last value in **intervals**.

hmean	Statistics
Syntax	hmean(A)
Description	Returns the harmonic mean of the elements of A: hmean(A) = $\left(\frac{1}{mn}\sum_{k=1}^{m-1}\sum_{k=1}^{n-1}\frac{1}{A_{k}}\right)$.
Arguments	$\begin{pmatrix} \cdots & i = 0 \ j = 0 \ \ddots & j \end{pmatrix}$
Α	real or complex $m \times n$ matrix or vector with all elements nonzero
See also	gmean, mean, median, mode
10	Bessel
Syntax	IO(x)
Description	Returns the value of the modified Bessel function $I_0(x)$ of the first kind. Same as $In(0, x)$.
Arguments	
X	real number
Algorithm	Small order approximation (Abramowitz and Stegun, 1972)
l1	Bessel
Syntax	l1(<i>x</i>)
Description	Returns the value of the modified Bessel function $I_1(x)$ of the first kind. Same as $ln(1, x)$.
Arguments	
x	real number
Algorithm	Small order approximation (Abramowitz and Stegun, 1972)

ibeta	(Professional) Special
Syntax	ibeta(<i>a</i> , <i>x</i> , <i>y</i>)
Description	Returns the value of the incomplete beta function with parameter a , at (x, y) .
Arguments a	real number, $0 \le a \le 1$
х, у	real numbers, $x > 0$, $y > 0$
Comments	The incomplete beta function often arises in probabilistic applications. It is defined by the following formula: $\Gamma(x + y) = \int_{a}^{a} x + (1 - y) y + 1 dy$
	$\operatorname{ibeta}(a, x, y) = \frac{1}{\Gamma(x) \cdot \Gamma(y)} \cdot \int_0^{tx^{-1} \cdot (1-t)y^{-1} dt}$
Algorithm	Continued fraction expansion (Abramowitz and Stegun, 1972)
icfft	Fourier Transform
Syntax	icfft(A)
Description	Returns the inverse Fourier transform corresponding to cfft. Returns an array of the same size as its argument.
Arguments A	real or complex matrix or vector
Comments	The cfft and icfft functions are exact inverses; $icfft(cfft(A)) = A$.
Algorithm	Singleton method (Singleton, 1986)
See also	fft for more details and cfft for example
ICFFT	Fourier Transform
Syntax	ICFFT(A)
Description	Returns the inverse Fourier transform corresponding to CFFT. Returns an array of the same size as its argument.
Arguments A	real or complex matrix or vector
Comments	The CFFT and ICFFT functions are exact inverses; $ICFFT(CFFT(A)) = A$.
Algorithm	Singleton method (Singleton, 1986)
See also	fft for more details and CFFT for example

identity

Syntax	identity(n)
Description	Returns the identity matrix of size n .
Arguments	
n	integer, $n > 0$

if

Piecewise Continuous

Syntax	if(cond, x, y)
Description	Returns <i>x</i> or <i>y</i> depending on the value of <i>cond</i> . If <i>cond</i> is true (non-zero), returns <i>x</i> . If <i>cond</i> is false (zero), returns <i>y</i> .
Arguments cond	arbitrary expression (usually a Boolean expression)

Arguments	
-	

cond	arbitrary	e

real or complex numbers х, у

Example

Comments Use if to define a function that behaves one way below a certain number and a different way above that number. That point of discontinuity is specified by its first argument, *cond*. The remaining two arguments let you specify the behavior of the function on either side of that discontinuity. The argument *cond* is usually a Boolean expression (made up using the Boolean operators =, >, <, \geq , \leq or \neq).

To save time, Mathcad evaluates only the necessary arguments. For example, if *cond* is false, there is no need to evaluate *x* because it will not be returned anyway. Therefore, errors in the unevaluated argument can escape detection. For example, Mathcad will never detect the fact that $\ln(0)$ is undefined in the expression if(|z| < 0, $\ln(0)$, $\ln(z)$).

You can combine Boolean operators to create more complicated conditions. For example, the condition $(x < 1) \cdot (x > 0)$ acts like an "and" gate, returning 1 if and only if *x* is between 0 and 1. Similarly, the expression (x > 1) + (x < 0) acts like an "or" gate, returning a 1 if and only if x > 1 or x < 0.

ifft	Fourier Transform
Syntax	ifft(v)
Description	Returns the inverse Fourier transform corresponding to fft. Returns a real vector of size 2^n .
Arguments v	real or complex vector of size $1 + 2^{n-1}$, where <i>n</i> is an integer.
Comments	The argument v is a vector similar to those generated by the fft function. To compute the result, Mathcad first creates a new vector w by taking the conjugates of the elements of v and appending them to the vector v . Then Mathcad computes a vector d whose elements satisfy this formula: $d_j = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} w_k e^{-2\pi i (j/n)k}.$
	This is the same formula as the fft formula, except for the minus sign in the exponent. The fft and ifft functions are exact inverses. For all real v , ifft(fft(v)) = v .
Algorithm	Cooley-Tukey (Press et al., 1992)
See also	fft for more details
IFFT	Fourier Transform
Syntax	IFFT(v)
Description	Returns the inverse transform corresponding to FFT. Returns a real vector of size 2^n .
Arguments v	real or complex vector of size $1 + 2^{n-1}$, where <i>n</i> is an integer.
Algorithm	Cooley-Tukey (Press et al., 1992)
See also	fft for more details

Bessel

Im

Syntax	Im(z)
Description	Returns the imaginary part of <i>z</i> .
Arguments z	real or complex number
See also	Re
In	
Syntax	$\ln(m, x)$
Description	Returns the value of the modified Bassel function $I_{(x)}$ of the first kind

Description	Retains the value of the modified Dessel function $I_m(x)$ of the first kind.
Arguments	
m	integer, $0 \le m \le 100$
x	real number
Comments Algorithm	Solution of the differential equation $x^2 \cdot \frac{d^2}{dx^2}y + x \cdot \frac{d}{dx}y - (x^2 + n^2) \cdot y = 0$. Small order approximation, upward recurrence relation (Abramowitz and Stegun, 1972; Press <i>et al.</i> , 1992)
See also	Kn

intercept

Regression and Smoothing

Syntax	intercept(vx, vy)
Description	Returns the y-intercept of the least-squares regression line.
Arguments vx, vy	real vectors of the same size
See also	slope for more details, stderr

interp

One-dimensional Case

Syntax	interp(vs, vx, vy, x)
Description	Interpolates the value from spline coefficients or regression coefficients. Takes three vector arguments \mathbf{vx} , \mathbf{vy} (of the same size) and \mathbf{vs} . Returns the interpolated y value corresponding to the point x.
Arguments	
vs	real vector output from interpolation routines bspline, cspline, lspline, or pspline or regression routines regress or loess
vx, vy	real vectors of the same size
x	real number
Comments	To find the interpolated value for a particular x , Mathcad finds the two points which x falls between. It then returns the y value on the cubic section enclosed by these two points. For x values less than the smallest point in vx , Mathcad extrapolates the cubic section connecting the smallest two points of vx . Similarly, for x values greater than the largest point in vx , Mathcad extrapolates the cubic section connecting the largest two points of vx .
	For best results, do not use the interp function on values of x far from the fitted points. Splines are intended for interpolation, not extrapolation. Consequently, computed values for such x values are unlikely to be useful. See predict for an alternative.
Two-dimensional	Case
Syntax	interp(vs, Mxy, Mz, v)
Description	Interpolates the value from spline coefficients or regression coefficients. Takes two matrix arguments Mxy and Mz (with the same number of rows) and one vector argument vs . Returns the interpolated <i>z</i> value corresponding to the point $x = v_0$ and $y = v_1$.
Arguments	
vs	real vector output from interpolation routines bspline, cspline, lspline, or pspline or regression routines regress or loess
Mxy, Mz	real matrices (with the same number of rows)
v	real two-dimensional vector
Comments	For best results, do not use the interp function on values of x and y far from the grid points. Splines are intended for interpolation, not extrapolation. Consequently, computed values for such

See also Ispline for example, bspline, cspline, pspline, regress, loess

x and y values are unlikely to be useful. See predict for an alternative.

IsArray	(Professional)	Expression Type
Syntax	lsArray(x)	
Description	Returns 1 if x is a matrix or vector; 0 otherwise.	
Arguments x	arbitrary real or complex number, array, or string	
IsScalar	(Professional)	Expression Type
Syntax	lsScalar(x)	
Description	Returns 1 if x is a real or complex number; 0 otherwise.	
Arguments x	arbitrary real or complex number, array, or string	
IsString	(Professional)	Expression Type
Syntax	lsString(x)	
Description	Returns 1 if x is a string; 0 otherwise.	
Arguments x	arbitrary real or complex number, array, or string	
iwave	(Professional)	Wavelet Transform
Syntax	iwave(v)	
Description	Returns the inverse wavelet transform corresponding to wave.	
Arguments v	real vector of 2^n elements, where <i>n</i> is an integer, $n > 0$.	
Algorithm	Pyramidal Daubechies 4-coefficient wavelet filter (Press et al., 1992)	
See also	wave for example	
JO		Bessel
Syntax	J0(<i>x</i>)	
Description	Returns the value of the Bessel function $J_0(x)$ of the first kind. Same a	as Jn(0, <i>x</i>).
Arguments x	real number	
Algorithm	Steed's method (Press et al., 1992)	

J1		Bessel
Syntax	J1(<i>x</i>)	
Description	Returns the value of the Bessel function $J_1(x)$ of the first kind. Same as $Jn(1, x)$.	
Arguments x	real number	
Algorithm	Steed's method (Press et al., 1992)	
Jac	(Professional)	Special
Syntax	Jac(<i>n</i> , <i>a</i> , <i>b</i> , <i>x</i>)	
Description	Returns the value of the Jacobi polynomial of degree n with parameters a and b , at x .	
Arguments n a, b x	integer, $n \ge 0$ real numbers, $a > -1$, $b > -1$ real number	
Comments	The Jacobi polynomial is a solution of the differential equation:	
	$(1-x^2) \cdot \frac{d^2}{dx^2} y + (b-a-(a+b+2) \cdot x) \cdot \frac{d}{dx} y + n \cdot (n+a+b+1) \cdot y = 0$ and includes the Chebyshev and Legendre polynomials as special cases.	
Algorithm	Recurrence relation (Abramowitz and Stegun, 1972)	
Jn		Bessel
Syntax	Jn(m, x)	
Description	Returns the value of the Bessel function $J_m(x)$ of the first kind.	
Arguments m	integer, $0 \le m \le 100$. real number	
Comments	Solution of the differential equation $x^2 \cdot \frac{d^2}{dx^2}y + x \cdot \frac{d}{dx}y + (x^2 - n^2) \cdot y = 0$.	
Algorithm	Steed's method (Press <i>et al.</i> , 1992)	
See also	Yn	

js	(Professional) Bessel
Syntax	js(n, x)
Description	Returns the value of the spherical Bessel function of the first kind, of order n , at x .
Arguments x n	real number, $x > 0$; $x = 0$ is permitted for js if $n \ge 0$ integer
Comments	Solution of the differential equation: $x^2 \cdot \frac{d^2}{dx^2}y + 2 \cdot x \cdot \frac{d}{dx}y + (x^2 - n \cdot (n+1))y = 0$.
Algorithm	<i>ax</i> Small order approximation, upward recurrence relation (Abramowitz and Stegun, 1972; Press <i>et al.</i> , 1992)
See also	ys
К0	Bessel
Syntax	K0(<i>x</i>)
Description	Returns the value of the modified Bessel function $K_0(x)$ of the second kind. Same as $Kn(0, x)$.
Arguments x	real number, $x > 0$
Algorithm	Small order approximation (Abramowitz and Stegun, 1972)
K1	Bessel
Syntax	K1(<i>x</i>)
Description	Returns the value of the modified Bessel function $K_1(x)$ of the second kind. Same as $Kn(1, x)$.
Arguments x	real number, $x > 0$
Algorithm	Small order approximation (Abramowitz and Stegun, 1972)
Kn	Bessel
Syntax	Kn(m, x)
Description	Returns the value of the modified Bessel function $K_m(x)$ of the second kind.
Arguments m x	integer, $0 \le m \le 100$. real number, $x > 0$

Comments	Solution of the differential equation $x^2 \cdot \frac{d^2}{2}y + x \cdot \frac{d}{dx}y - (x^2 + n^2) \cdot y = 0$.
See also	dx^{-} ux
Algorithm	Small order approximation, upward recurrence relation (Abramowitz and Stegun, 1972; Press <i>et al.</i> , 1992)
ksmooth	(Professional) Regression and Smoothing
Syntax	ksmooth(vx, vy, b)
Description	Creates a new vector, of the same size as vy , by using a Gaussian kernel to return weighted averages of vy .
Arguments vx, vy b	real vectors of the same size; elements of vx must be in ascending order real bandwidth $b > 0$; controls the smoothing window and should be set to a few times the spacing between your data points on the <i>x</i> -axis, depending on how big of a window you want to use when smoothing
Comments	The ksmooth function uses a Gaussian kernel to compute local weighted averages of the input vector vy . This smoother is most useful when your data lies along a band of relatively constant width. If your data lies scattered along a band whose width fluctuates considerably, you should use an adaptive smoother like supsmooth.
	For each vy_i in the <i>n</i> -element vector vy , the ksmooth function returns a new vy'_i given by: $vy'_i = \frac{\sum_{j=1}^{n} K\left(\frac{vx_i - vx_j}{b}\right)vy_j}{\sum_{j=1}^{n} K\left(\frac{vx_i - vx_j}{b}\right)}$ where: $K(t) = \frac{1}{\sqrt{2\pi} \cdot (0.37)} \cdot \exp\left(-\frac{t^2}{2 \cdot (0.37)^2}\right)$ and <i>b</i> is a bandwidth which you supply to the ksmooth function. The bandwidth is usually set to a few times the spacing between data points on the <i>x</i> axis, depending on how big a window you want to use when smoothing.
Algorithm	Moving window Gaussian kernel smoothing (Lorczak)
See also	medsmooth for more details, supsmooth
kurt	Statistics
Syntax	kurt(A)
Description	Returns the kurtosis of the elements of A : $kurt(\mathbf{A}) = \left(\frac{mn(mn+1)}{(mn-1)(mn-2)(mn-3)}\sum_{i=0}^{m-1}\sum_{j=0}^{n-1}\left(\frac{\mathbf{A}_{i,j} - mean(\mathbf{A})}{Stdev(\mathbf{A})}\right)^4\right) - \frac{3(mn-1)^2}{(mn-2)(mn-3)}$

Arguments A

real or complex $m \times n$ matrix or vector; $m \cdot n \ge 4$

Lag	(Professional) Special
Syntax	Lag(n, x)
Description	Returns the value of the Laguerre polynomial of degree <i>n</i> at <i>x</i> .
Arguments n x	integer, $n \ge 0$ real number
Comments	The Laguerre polynomial is a solution of the differential equation
Algorithm	$x \cdot \frac{d^2}{dx^2}y + (1-x) \cdot \frac{d}{dx}y + n \cdot y = 0.$ Recurrence relation (Abramowitz and Stegun, 1972)
last	Vector and Matrix
Syntax	last(v)
Description	Returns the index of the last element in vector v .
Arguments v	vector
Comments	last(v) = length(v) - 1 + ORIGIN
See also	rows
lcm	Number Theory/Combinatorics
Syntax	lcm(A)
Description	Returns the smallest positive integer that is a multiple of all the values in the array \mathbf{A} . This integer is known as the least common multiple of the elements in \mathbf{A} .
Arguments A	integer matrix or vector; all elements of A are greater than zero
Algorithm	Euclid's algorithm (Niven and Zuckerman, 1972)
See also	gcd

Leg	(Professional) Special
Syntax	Leg(n, x)
Description	Returns the value of the Legendre polynomial of degree n at x .
Arguments n x	integer, $n \ge 0$ real number
Comments	The Legendre polynomial is a solution of the differential equation
	$(1-x^2) \cdot \frac{d^2}{dx^2} y - 2 \cdot x \cdot \frac{d}{dx} y + n \cdot (n+1) \cdot y = 0.$
Algorithm	Recurrence relation (Abramowitz and Stegun, 1972)
length	Vector and Matrix
Syntax	length(v)
Description	Returns the number of elements in vector v .
Arguments v	vector
Comments	Same as rows(v)
linfit	Regression and Smoothing
Syntax	linfit(vx, vy, F)
Description	Returns a vector containing the coefficients used to create a linear combination of the functions in \mathbf{F} which best approximates the data in \mathbf{vx} and \mathbf{vy} . See genfit for a more general technique.
Arguments	
vx, vy	real vectors of the same size; elements of \mathbf{vx} should be in ascending order
F	a function that returns a vector of functions

Comments Not all data sets can be modeled by lines or polynomials. There are times when you need to model your data with a linear combination of arbitrary functions, none of which represent terms of a polynomial. For example, in a Fourier series you try to approximate data using a linear combination of complex exponentials. Or you may believe your data can be modeled by a weighted combination of Legendre polynomials, but you just don't know what weights to assign.

The linfit function is designed to solve these kinds of problems. If you believe your data could be modeled by a linear combination of arbitrary functions:

 $y = a_0 \cdot f_0(x) + a_1 \cdot f_1(x) + \dots + a_n \cdot f_n(x)$, you should use linfit to evaluate the a_i . The example above shows a linear combination of three functions x, x^2 , and $(x + 1)^{-1}$ to model some data.

There are times however when the flexibility of linfit is still not enough. Your data may have to be modeled not by a linear combination of data but by some function whose parameters must be chosen. For example, if your data can be modeled by the sum:

 $f(x) = a_1 \cdot \sin(2x) + a_2 \cdot \tanh(3x)$ and all you need to do is solve for the unknown weights a_1 and a_2 , then the linfit function is sufficient. By contrast, if instead your data is to be modeled by the sum: $f(x) = 2 \cdot \sin(a_1x) + 3 \cdot \tanh(a_2x)$ and you now have to solve for the unknown parameters a_1 and a_2 , you should use the genfit function.

Algorithm SVD-based least squares minimization (Press et al., 1992)

See also genfit

linterp

Interpolation and Prediction

Syntax	linterp($\mathbf{vx}, \mathbf{vy}, x$)
Description	Returns a linearly interpolated value at <i>x</i> .
Arguments	real vesters of the same size, elements of up should be in according order
vx, vy	real vectors of the same size; elements of vx should be in ascending order
x	real number at which to interpolate

Comments Interpolation involves using existing data points to predict values between these data points. Mathcad allows you to either connect the data points with straight lines (linear interpolation) or to connect them with sections of a cubic polynomial (cubic spline interpolation).

Unlike the regression functions discussed elsewhere, these interpolation functions return a curve which must pass through the points you specify. Therefore, the resulting function is very sensitive to spurious data points. If your data is noisy, you should consider using the regression functions instead.

Be sure that every element in the **vx** and **vy** arrays contains a data value. Because every element in an array must have a value, Mathcad assigns 0 to any elements you have not explicitly assigned.

To find the interpolated value for a particular *x*, linterp finds the two points between which the value falls and returns the corresponding *y* value on the straight line between the two points.

For x values before the first point in **vx**, linterp extrapolates the straight line between the first two data points. For x values beyond the last point in **vx**, linterp extrapolates the straight line between the last two data points.

For best results, the value of x should be between the largest and smallest values in the vector **vx**. The linterp function is intended for interpolation, not extrapolation. Consequently, computed values for x outside this range are unlikely to be useful. See predict for an alternative.

In	Log and Exponential
Syntax	ln(z)
Description	Returns the natural logarithm of nonzero z (to base e). It is the principal value (imaginary part between π and $-\pi$) for complex z.
Arguments	real or complex number
Example	$\begin{split} & \ln(2) + 0.633 + c \longrightarrow s - s^{-200} + 2 \\ & \ln(-2) + 0.603 + 0.1423 + c \longrightarrow tog of a segaritye resolver is always here a log of the magnitude plane 60 \\ & \ln(0) - s - Since anything raised to the 0 in 1. \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$
Comments	In general, a complex argument to the natural log function returns: $\ln(x + i \cdot y) = \ln x + i \cdot y + \operatorname{atan}(y/x) \cdot i + 2 \cdot n \cdot \pi \cdot i$ Mathcad's ln function returns the value corresponding to $n = 0$, namely: $\ln(x + i \cdot y) = \ln x + i \cdot y + \operatorname{atan}(y/x) \cdot i$ (principal branch of the natural log function).
See also	log

LoadColormap File Acces	
Syntax	LoadColormap(file)
Description	Returns an array containing the values in the colormap file.
Arguments <i>file</i>	string variable corresponding to CMP filename
Comments	The file <i>file</i> is the name of a colormap located in the CMAPS subdirectory of your Mathcad directory. The function LoadColormap is useful when you want to edit a colormap or use it to create a new colormap. See on-line Help for more information
See also	SaveColormap

loess (Professional)

One-dimensional Case

Syntax loess(vx, vy, span)

Description Returns the vector required by the interp function to find the set of second order polynomials that best fit particular neighborhoods of data points specified in arrays **vx** and **vy**.

Arguments

vx, vy real vectors of the same size

span real span > 0 specifies how large a neighborhood loess will consider in performing this local regression

Example

$i \geq 0, \ 20 \qquad y_i \geq i-10 \qquad y \geq \operatorname{stack}(P,Q)$	-1.5	1.00
1	-1	2.24
$y1 := locan(x, y, 0.3)$ \sim using space 0.5	0.5	2.89
efficie ferenziar en 1931 - el conten en en 193	2.11	3.99
Recommendation and advances	2.35	4.39
	3.41	
Smaller span causes loss to causider a smaller minible balance and the statement of the second statem	3.05	9.12
curve that more closely tracks the data.	3.05	9.29
	3.29	5.27
	3.93	n. ^{8,96}
· · · · · · · · · · · · · · · · · · ·	3.95	4.8
	2.99	4.4
	2.54	3.7
11 N M	2	2.89
	1.49	2.91
summer (back (track))	12	1.01
	1.1	1.77
	1,18	2
10 0 10 20 30	1.29	2.4
n	1.64	3.4

Comments

Instead of generating a single polynomial the way regress does, loess generates a different second order polynomial depending on where you are on the curve. It does this by examining the data in a small neighborhood of the point you're interested in. The argument *span* controls the size of this neighborhood. As *span* gets larger, loess becomes equivalent to regress with n = 2. A good default value is *span* = 0.75.

The example above shows how *span* affects the fit generated by the **loess** function. A smaller value of *span* makes the fitted curve track fluctuations in data more effectively. A larger value of *span* tends to smear out fluctuations in data and thereby generates a smoother fit.

Two-dimensional Case

Syntax	loess(Mxy, vz, span)
Description	Returns the vector required by the interp function to find the set of second order polynomials that best fit particular neighborhoods of data points specified in arrays Mxy and vz .
Arguments Mxy vz span	real $m \times 2$ matrix containing <i>x</i> - <i>y</i> coordinates of the <i>m</i> data points real <i>m</i> -element vector containing the <i>z</i> coordinates corresponding to the points specified in Mxy real <i>span</i> > 0 specifies how large a neighborhood loess will consider in performing this local regression
Comments	Can be extended naturally to the three- and four-dimensional cases (that is, up to four independent variables).
Algorithm See also	Local polynomial estimation (Cleveland and Devlin, 1988) regress for more details

log

Classical Definition

Log and Exponential

Syntax	log(z)
Description	Returns the common logarithm of nonzero z to base 10. The result is the principal value (imaginary part between π and $-\pi$) for complex z .
Arguments	
z	real or complex number
Extended Definiti	ion
Syntax	log(<i>z</i> , <i>b</i>)
Description	Returns the logarithm of nonzero z to base b . The result is the principal value (imaginary part between π and $-\pi$) for complex z .
Arguments	
z	real or complex number
b	real number, $b > 1$
See also	In

Isolve	(Professional) Vector	or and Matrix
Syntax	lsolve(M, v)	
Description	Returns a solution vector \mathbf{x} such that $\mathbf{M} \cdot \mathbf{x} = \mathbf{v}$.	
Arguments M v	real or complex square matrix that is neither singular nor nearly singular real or complex vector	
Example	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
Comments	A matrix is singular if its determinant is zero; it is nearly singular if it has a high cor Alternatively, you can solve a system of linear equations by using matrix inversion or symbolic solve blocks.	ndition number. on, via numeric
Algorithm	LU decomposition and forward/backward substitution (Press et al., 1992)	
Ispline	Interpolation ar	nd Prediction
One-dimensiona	al Case	
Syntax	lspline(vx, vy)	
Description	Returns the vector of coefficients of a cubic spline with linear ends. This vector becomes the first argument of the interp function.	
Arguments vx, vy	real vectors of the same size; elements of \mathbf{vx} must be in ascending order	

Comments Cubic spline interpolation lets you pass a curve through a set of points so that the first and second derivatives of the curve are continuous across each point. This curve is assembled by taking three adjacent points and constructing a cubic polynomial passing through those points. These cubic polynomials are then strung together to form the completed curve.

To fit a cubic spline curve through a set of points:

- 1. Create the vectors **vx** and **vy** containing the *x* and *y* coordinates through which you want the cubic spline to pass. The elements of **vx** should be in ascending order. (Although we use the names **vx**, **vy**, and **vs**, there is nothing special about these variable names; you can use whatever names you prefer.)
- 2. Generate the vector **vs** := lspline(**vx**, **vy**). The vector **vs** is a vector of intermediate results designed to be used with interp. It contains, among other things, the second derivatives for the spline curve used to fit the points in **vx** and **vy**.
- To evaluate the cubic spline at an arbitrary point, say x0, evaluate interp(vs, vx, vy, x0) where vs, vx, and vy are the vectors described earlier. You could have accomplished the same task by evaluating: interp(lspline(vx, vy), vx, vy, x0) . As a practical matter, though, you'll probably be evaluating interp for many different points.

The call to **lspline** can be time-consuming and the result won't change from one point to the next, so it makes sense to do it just once and store the outcome in the **vs** array.

Be sure that every element in the input arrays contains a data value. Because every element in a array must have a value, Mathcad assigns 0 to any elements you have not explicitly assigned.

In addition to lspline, Mathcad comes with three other cubic spline functions: pspline, cspline, and bspline. The pspline function generates a spline curve that approaches a parabola at the endpoints, while the cspline function generates a spline curve that can be fully cubic at the endpoints. bspline, on the other hand, allows the interpolation knots to be chosen by the user.

For lspline, the first three components of the output vector vs are vs₀=0 (a code telling interp that vs is the output of a spline function as opposed to a regression function), vs₁=3 (the index within vs where the second derivative coefficients begin) and vs₂=0 (a code denoting lspline). The first three components for pspline and cspline are identical except vs₂=1 (the code denoting pspline) and vs₂=2 (the code denoting cspline), respectively.

Two-dimensional Case

Syntax	lspline(Mxy, Mz)
Description	Returns the vector of coefficients of a two-dimensional cubic spline, constrained to be linear at region boundaries spanned by Mxy . This vector becomes the first argument of the interp function.
Arguments	
Мху	$n \times 2$ matrix whose elements, $Mxy_{i,0}$ and $Mxy_{i,1}$, specify the <i>x</i> - and <i>y</i> -coordinates along the <i>diagonal</i> of a rectangular grid. This matrix plays exactly the same role as vx in the one-dimensional case described earlier. Since these points describe a diagonal, the elements in each column of Mxy must be in ascending order $(Mxy_{i,k} < Mxy_{j,k}$ whenever $i < j$).
Mz	$n \times n$ matrix whose <i>ij</i> th element is the <i>z</i> -coordinate corresponding to the point $x = Mxy_{i,0}$ and $y = Mxy_{j,1}$. Mz plays exactly the same role as vy does in the one-dimensional case above.
Comments	Mathcad handles two-dimensional cubic spline interpolation in much the same way as the one- dimensional case. Instead of passing a curve through a set of points so that the first and second derivatives of the curve are continuous across each point, Mathcad passes a surface through a grid of points. This surface corresponds to a cubic polynomial in <i>x</i> and <i>y</i> in which the first and second partial derivatives are continuous in the corresponding direction across each grid point.
	The first step in two-dimensional spline interpolation is exactly the same as that in the one- dimensional case: specify the points through which the surface is to pass. The procedure, however, is more complicated because you now have to specify a grid of points.
	To perform two-dimensional spline interpolation, follow these steps:
	1. Create Mxy .
	2. Create Mz .
	3. Generate the vector $\mathbf{vs} := \text{lspline}(\mathbf{Mxy}, \mathbf{Mz})$. The vector \mathbf{vs} is a vector of intermediate results designed to be used with interp. To evaluate the cubic spline at an arbitrary point, say $(x0, y0)$, evaluate $\text{interp}\left(\mathbf{vs}, \mathbf{Mxy}, \mathbf{Mz}, \begin{bmatrix} x0\\ y0 \end{bmatrix}\right)$, where $\mathbf{vs}, \mathbf{Mxy}$, and \mathbf{Mz} are as described earlier. The result is the value of the interpolating surface corresponding to the arbitrary point
	(x0, y0). You could have accomplished exactly the same task by evaluating:

interp
$$\left(\text{lspline}(\mathbf{Mxy}, \mathbf{Mz}), \mathbf{Mxy}, \mathbf{Mz}, \begin{bmatrix} x 0 \\ y 0 \end{bmatrix} \right)$$